
74 communications of the acm | november 2008 | vol. 51 | no. 11

porated as a commercial product—
the Tableau system—that can analyze
high-dimensional data from flat files,
spreadsheets, and SQL data sources.
The data algebra and graph algebra de-
veloped here is key to the success of the
visual query language and Tableau.

Hence, this is a rare paper that ex-
plains both the basic premise and
its real-world evaluation. The notion
that a formal algebra of relationships
between tables and visual encodings
would help the exploratory nature of
the system was indeed validated. How-
ever, they found that default values of
the visual encodings were important
since few users opted to choose the de-
tails of shape and color selection, since
they were not trained graphic design-
ers nor psychologists and would rather
spend their time exploring the data.	

dimensions or measurements in a data
viewer. This combination makes it sim-
ple for users to ask “what if” questions
for large multidimensional datasets.

Here is the “Visual SQL” to create
a map by U.S. ZIP code of fundraising
by the U.S. presidential candidates
through May 2008. It places the results
on a map using the latitude and longi-
tude and lets the system pick the size
of the circles representing the relative
amounts of fundraising. It totals the
amount of fundraising per candidate
per ZIP code.

In fact the research for this work was
conducted several years ago and incor-

 SELECT Latitude ON ROWS,
 ([Candidate Name] * Longitude) ON COLUMNS,
 [Candidate Name] ON COLOR,
 SUM(Amount) ON SIZE,
 [Zip Code] ON LEVEL_OF_DETAIL
FROM [Contributions View]
WHERE [Candidate Name] = {“John McCain”,”Barack Obama”}

The VizSQL code above results in the following SQL code to collect the data:

SELECT ([Contributions View].[Candidate Name]),
 ([Contributions View].[Zip Code]),
 (SUM([Contributions View].[Amount]))
FROM [dbo].[Contributions View]
WHERE ((([Contributions View].[Candidate Name]) IN (‘McCain, John S’, ‘Obama,
Barack’))
GROUP BY ([Contributions View].[Candidate Name]), ([Contributions View].[Zip
Code])

The graph here is the output of this query zoomed into Manhattan Island in New York City.

Technical Perspective
The Polaris Tableau System
By Jim Gray

research highlights

doi:10.1145/1400214.1400233

*Jim Gray nominated the Polaris paper for the Re-

search Highlights section and wrote the first draft

of this Technical Perspective in November 2006.

David Patterson revised the essay in August 2008.

Data-intensive applications often
have dozens of independent dimen-
sions with a set of measurements for
each. Such high-dimensional datasets
involving many variables and measure-
ments are increasingly common, but
good tools to analyze them are not. If you
have ever been frustrated when trying to
plot a useful graph from a simple spread-
sheet, you would appreciate the value of
a system that allows users to create stun-
ning graphs interactively and easily from
large multidimensional datasets.

Stolte, Tang, and Hanrahan have
done that with Polaris, a declarative
visual query language that unifies the
strengths of visualization and database
communities. It allows users to visual-
ize relationships between data using
shape, size, orientation, color, and tex-
ture in all kinds of graphs, and lever-
ages the advances in database systems
to optimize performance of accesses to
large datasets. This combination lets
you interactively explore the raw data
or perform data analysis. It is a major
improvement over how analysis is cur-
rently done.

Their work makes three advances
in parallel: First, they show how to au-
tomatically construct graphs, charts,
maps, and timelines as table visualiza-
tions. While these ideas are implicit in
many graphing packages, the authors
unified several approaches into a sim-
ple algebra for graphical presentation
of quantitative and categorical informa-
tion. The unification makes it easy to
switch from one representation to an-
other and to change or add dimensions
to a graphical presentation. Second,
they unify this graphical language with
the SQL query languages, producing
a declarative visual query language in
which a single “program” specifies both
data retrieval and data presentation.
The third advance is a GUI that “writes”
the visual queries as you drag and drop

