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Fig. 1. Our model of data science work synthesized from an extensive and systematic literature review. We summarize data science
work processes as constituting four higher order and fourteen lower order processes. Red boarders around the lower order processes
highlight where we found explicit evidence in the literature for data visualization as a core component of the work being carried out,
these processes were profiling, interpretation, monitoring, and dissemination. We also identified two emergent processes, collaboration
and pedagogy, that we believe are of growing importance but not consistently acknowledged to be a part of data science work.

Abstract—Data science is a rapidly growing discipline and organizations increasingly depend on data science work. Yet the ambiguity
around data science, what it is, and who data scientists are can make it difficult for visualization researchers to identify impactful
research trajectories. We have conducted a retrospective analysis of data science work and workers as described within the data
visualization, human computer interaction, and data science literature. From this analysis we synthesis a comprehensive model that
describes data science work and breakdown to data scientists into nine distinct roles. We summarise and reflect on the role that
visualization has throughout data science work and the varied needs of data scientists themselves for tooling support. Our findings are
intended to arm visualization researchers with a more concrete framing of data science with the hope that it will help them surface

innovative opportunities for impacting data science work.

Data availability: https://osf.io/z2xpd/?view_only=87fa24be486a473884adb9ffbe8dblec
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1 INTRODUCTION

Data science and visualization share a common goal of helping peo-
ple understand their data, offering complementary approaches toward
this aim. In this spirit, both communities have created visualization
platforms and libraries that support data science work. From the visual-
ization community notable examples include libraries such as D3 [12]
or Vega [71], as well as foundational research that led to systems like
Trifacta [36] and Tableau [77]. From the statistical and machine learn-
ing communities libraries such as ggplot [83] and techniques such as
t-SNE [79] or UMAP [52] have similarity seen wide adoption. But
as data science work has become more common, the minatue of this
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work has grown in complexity and scope [23]. In tandem with the
change is the growing diversity of individuals who engage in data work,
which has provoked researchers in other disciplines to reexamine what
it means to be a data scientist [23, 31, 40]. Existing studies in the
visualization literature [6,9,36,47,87] have examined data scientists
and analysts and similarity interrogated them about their processes and
visualization needs. While these studies have generated important and
actionable insights for the visualization community, we noted that their
frame of reference for data science work was not consistent. Upon
deeper reviewer found that these studies each captured a different aspect
of data science processes and further that what was captured did not
entirely overlap with processes reported in the data science literature
(i.e [15,23]). While there did exist different degrees of overlap we were
overall intrigued by the inconsistency and concerned it could introduce
a misalignment between the efforts of the visualization and data science
communities.

We believe what is lacking is a modern framework of data science,
one that captures the changes in data work over time and the diversity
of data workers. With such a framework in hand, researchers and
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practitioners in both communities would be better able to reflect on
their tools, techniques, and even elicitation methods to assess where
there exist unmet needs amongst data scientists. Toward this objective
we conduct a comprehensive and retrospective analysis of the data
science and visualization research literature. Our contributions through
this research are the following:

* A novel model of data science work, broken down into four
higher order processes (Preparation, Analysis, Deployment, and
Communication) composed of fourteen lower order processes.

* A novel breakdown of data scientists into nine roles and a de-
lineation of their expertise with respect to statistics, computer
science, specific domains, and human-centered design.

We believe this synthesis, derived from multiple bodies of research
literature, is timely and important to both communities. Furthermore,
we hope that our emphasis here on the intersection of data visualization
and data science can serve as a fruitful starting point of collaboration
between our two communities.

2 RELATED WORK

We begin with a review prior research from multiple disciplines de-
scribing data science work and data scientists.

2.1 Visualization and data science

Models for data science work have their foundations in those initially
proposed from the knowledge discovery and databases (KDD) commu-
nity. Initially framed for data mining work, these models have influ-
enced both academic and industrial data science practices. The KDD
model was the first such model [27] and constitutes five phases: data
selection, preprocessing, transformation, mining, and finally interpre-
tation / evaluation. One of the best known iterations of this model was
CRISP-DM, the Cross-Industry Standard Processes for Data Mining
(CRISP-DM) [84]. CRISP-DM constitutes five phases: business under-
standing, data understanding, modeling, evaluation, and deployment.
The CRISP-DM model also augmented these phases with descriptions
of so-called ‘generic tasks’, ‘specific tasks’, and finally lower level
‘processes’. A more recent variation of CRISP-DM is TDSP, the Team
Data Science Process model, which acknowledges that data science
work is increasingly carried out by teams that must coordinate [2].
Visualization research studies that have examined data scientist have
arrived at a similar set of data science work phases [6,9,36,47,87].

‘We note with some consternation that neither the KDD, CRISP-DM,
or TDSP models refer to data visualization, although all have explicit
steps for statistical modeling. Khan et al. [38] in 2014 showed that
visualization is a low priority concern for data scientists, but it is not
clear whether this is because their needs are met by existing tools
or because they do not often use visualization in their work. There
are explicit references to visualization in other contemporary models,
such as in Grolemund and Wickham’s model for data exploration [30],
Menger et al.’s interactive data mining model (CRISP-IDM) [54], and
Moreno et al.’s data science life cycle [S9]. However, visualization
appears to occupy a limited role in these models, typically as a means
to present the results of statistical or machine learning models.

Our research extends prior work by synthesizes a novel and contem-
porary model of data science work from the existing literature. In doing
so, we amalgamated and reconciled many of the different phases, steps,
and tasks in existing models.

2.2 Analyzing the analyzers

Harris ef al.’s [31] seminal study took an early look at those called
“data scientists”’; noting the diversity in their ranks, classifying them
as data business people, creatives, developers, and researchers. Kim et
al. [39,40] examined the “data scienctist” role within Microsoft over a
single year of explosive growth. Their findings not only corroborated
Harris’s but extended them by introducing new roles. Work by Wang
et al. [81] and Zhang et al. [91] codified the challenges data scientists
experience when working together, examining the way they share code,
data, and tasks, as well as the different needs across data scientist roles.

Visualization researchers have studied data scientists as well. Kandel
et al.’s [36] interview study established data preparation challenges
that were used to guide the development of a visualization system [37].
Wongsuphasawat et al. [87] used a similar interview approach to ex-
amine the processes and pain points for data exploration. More recent
work by Liu et al. [47] demonstrated how it was possible to construct
graphs describing the paths of data science work unique to individual
data scientists. These studies observed data science processes and how
they were unique to individual data scientists and roles. Other research
on data scientists examined the utility of specific visualization inter-
ventions. For example, Alspaugh et al. [6] and Batch et al. [9] both
examined the use of interactive visualization in exploration and showed
that it was underutilized. As we noted earlier, these studies capture and
emphasize different aspects of data science work. These differences
were driven by the authors’ focusing on a specific aspect of data sci-
ence work, for example Alspaugh et al. [6] focuses on exploration, or
by the experiences of their participant pools, such as Kandel [36] or
Wongsuphasawat [87]. We believe it is valuable to conduct an anal-
ysis across these different studies in conjunction with the findings of
the data science community to capture and summarize this diversity
of experiences. Finally, these visualization studies do not appear to
address the diversity amongst the role of a data scientist, which has
been observed by Harris [31] and others, and thus may have missed
surface unmet visualization needs in data work.

As with data science work, there is considerable diversity in the
description of data scientists across the literature. Our work extends
existing research by conducting a synthesis of these prior studies and
derives a contemporary classification of data science roles.

3 LITERATURE SEARCH AND ANALYSIS METHODOLOGY

In this section we describe our methodology for searching and analyzing
the data science and data visualization research literature. We use
established approaches from prior studies in visualization research
(i.e., [35,43]), with some modifications that we describe here. An
online repository contains the final list of reviewed literature and the
analysis we conducted (see Abstract for link).

We used a “snowball approach” [85] to conduct our literature review.
We began by assembling an initial set of documents, removing those
that we considered to be outside the scope of our study, and using back-
ward (references) and foreword (citations) to augment this initial set.
To generate an initial set of data science literature, we used Semantic
Scholar (https://www.semanticscholar.org/), which aggregates
published research from peer-reviewed (i.e., PubMed, Springer, Nature,
etc.) and pre-print (i.e., ArXiv) databases.

We searched for articles on (‘‘data science’’ OR ‘‘big
data’’) published between January 2010 and January 2020. We
included the term ‘big data’ as existing reviews on data science [14,23]
indicated that data science is often synonymous with big data. Using
these search criteria, Semantic Scholar returned approximately 19,600
works. We further restricted the analysis to ‘journal article’ types (n =
9,230 publications) that, for the purposes of reproducibility, have a PDF
available (n = 3,008). In a first pass review, we noticed low specificity
in the search results and further rejected articles that did not contain
‘data science’, ‘big data’, or ‘data analysis’ in their titles or abstracts, re-
sulting in a final dataset of 218 articles. We randomly checked 50 of the
rejected articles to be sure that we did not miss important content. We
conducted a second pass review by considering all 218 articles in detail
(title, abstract, full text) and accepted only papers that we determined
to be relevant to data science. Two primary grounds for exclusion were:
1) the article reported data analysis specific to a domain without generic
steps relevant beyond its context, or 2) the article presented a highly
specific technique without context of how it pertains to data science
as a whole. Of 218 articles, 70 were used for our analysis of the data
science literature. We provide an exhaustive list of exclusion criteria in
our online materials. Finally, via snowball sampling of the references,
we identified an additional 9 articles. Finally, we added an additional 7
articles that were known to us. In total we conducted a deep review of
86 articles.
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3.1 AQualitative Coding Process

We collected text, figures, and tables that described data science work
and workers from this set of 86 articles. We performed an initial open
and axial coding pass that produced a set of codes for the definition
of data science, the description of data science work as processes,
and finally a classification of data science roles. We further arranged
codes for data science work into a set of four higher-order processes
(preparation, analysis, deployment, and communication) that comprised
fourteen lower-order processes. We also identified two emergent pro-
cesses (collaboration, and pedagogy) that we deemed were important
to data science work but did not appear to be recognized as such; due
to this lack of strong evidence these processes were not assigned to
a higher-order process but we still included them for consideration.
As we developed these processes codes we also paid close attention
to the specific mention of visualization use. Moreover, through this
round of coding the importance of the roles became evident, something
we had not anticipated. We found that in the literature outside of the
visualization research community linked data science work to the ex-
pertise of the analyst; this was especially true of studies like Harris et
al. [31] and Kim et al. [40]. We observed that data scientist expertise
was measured consistently along axes of computer science, statistics,
and domain expertise. Focusing on a subset of studies that reported on
data scientists, we developed a set of codes for different roles and also
classified them according to higher-order processes.

These codes and the evidence that supports them were shared with a
larger group of individuals that engage in various facets of data work.
We recorded their feedback in written notes and used these, along
with the artifacts we collected from the research articles, to perform
another coding iteration. We met frequently to discuss the codes and
we continued to refine them until we reached a point of saturation. The
final results of our coding processes is reflected of the structure of
our paper, beginning with our working definition of data science, our
description of data science processes, and finally our classification of
data science roles. The online materials contains our coding artifacts.

4 WHAT IS DATA SCIENCE?

There exists ambiguity and even some contention as to what data
science actually is. It has been debated whether data science is a
field of study in its own right, or whether it is a descriptor for a set
of methods and techniques [3, 23, 66]. A number of experts from
across several disciplines have argued that data science deserves a
distinct status from other disciplines because of the unique emphasis
it places on the integration of computation, statistics, and domain-
specific knowledge [11, 14, 19,23]. That is, domain experts may use
data science techniques to achieve their means, but are generally less
inclined to “scientifically study data analysis”, which is regarded as
the purview of data science [23]. That is, the field of data science adds
critical structure to the way that statistical and computational techniques
are applied to answer data questions. However, others argue that data
science augments applied research, which has developed a similar set of
methods and techniques because of a need to analyze increasingly large
and heterogeneous data [11, 13,23,24,33,54,72,76,86]. As a middle
ground, some disciplines have crafted the nomenclature of ‘data science
for X’ [14], where X is a substitute for a discipline such as biology,
economics, or nursing. Where experts generally agree that the need
to integrate across multiple disciplines coupled with the challenges of
creating a robust analytic infrastructure have introduced a unique set of
challenges that are best tackled by so-called “data scientists” [11,23-25,
65,66]. It is also clear that the rise of the “data scientist” has impacted
academic curricula in statistics, computer science, and other domains,
which are being actively redeveloped to prepare new researchers and
practitioners with the set of skills that data science work demands [11,
19,23,63,65].

To define the scope of our investigation, we use the following work-
ing definition : Data science is a multidisciplinary field that aims
to learn new insights from real-world data through the structured
application of primarily statistical and computational techniques.
We acknowledge that the validity of data science as a field in its
own right is complex and entangled in the,history of data analysis

and science in general, as succinctly described by Gray’s ‘Fourth
Paradigm’ [33]. We, as do others [11, 23], attribute the technologi-
cal changes that enables the collection of larger datasets to have played
an important role in the evolution of data science. Domain experts in
specific discipline have used computational and statistical techniques to
conduct analytic research on these large datasets, however, the means
for applying those techniques did not emerge from domain experts
alone. Nor did those means emerge solely from statistics or com-
puter science. It is subtle, but it is that intermediary space between
disciplines that data scientists occupy and whose efforts to integrate
techniques from across disciplines are essential. We consider this to
be a worthwhile and interesting group and so focus on them in our
investigation.

5 DATA SCIENCE PROCESSES

We model data science work as a set of interconnected higher and
lower order processes. Prior research has used the terminology of
‘generic’ and ‘specific’ tasks to describe data science work [84]. We
have instead chosen to use ‘processes’ because it is a term that encapsu-
lates the variety of tasks and procedures a data scientist may carry out.
From our analysis of the data science literature we have synthesized
four higher order and fourteen lower order processes that model data
science work:

* Preparation: Defining Needs, Data Gathering, Data Creation,
Profiling, and Data Wrangling

e Analysis: Experimentation, Exploration, Modeling, Verification,
and Interpretation.

e Deployment: Monitoring and Refinement
¢ Communication: Dissemination and Documentation

Altogether these processes form our model of data science work, as
shown in Fig. 1. We also illustrated the relationships between these
processes by including arrows that suggest the flow of knowledge and
artifacts (data, code, and models). While we present these processes
as discrete ordered chunks, in reality, there is considerable overlap
between them as well as a non-linearity in terms of when and how they
take place. Thus, this model should be consider more of baseline to
contextualize data science work rather than as an absolute ground truth.
Two additional lower order processes that we identified, collaboration
and pedagogy, are not routinely considered to be data science work.
While we exclude these processes from Fig. 1, we believe that they are
important and merit discussion.

We now present definitions for the higher and lower order processes
that we synthesized from the data science literature. We also identify
visualization research that aligns with these processes.

5.1

Preparing the data ahead of analysis is an essential component of data
science work [22,23,27,36,39,81,84,87]. Given the importance of
preparation work, it is not surprising that prior research has found these
processes to be the most time-consuming [1,23,40,56,60]. Preparation
processes requires considerable human intervention and are difficult to
automate [40]. We synthesized five preparation processes : defining
needs, data gathering, data creation, profiling, and data wrangling.
Defining needs is the process of translating analytic objectives and
goals, usually defined by an external stakeholder, as a viable set of re-
quirements for data science work [84]. These requirements can include
data, statistical analysis plans, and expected deliverables. Deliverables
are typically static reports, but they can also include statistical or ma-
chine learning models, dashboards, or computational infrastructure [23].
Correctly framing a viable “data question” is a critical component of
defining needs, but a challenge for many data scientists [51]. Curiously,
not all models of data science work include this step, but we do not
know whether that is because it is implied or because it is overlooked.
Data gathering is the process of identifying suitable datasets from
a landscape of many candidates. Gathering data can include devel-
oping a set of criteria to gather data, if it does not currently exist, or
generating new data by integrating and transforming two or more exist-
ing datasets [56]. Identifying suitable data is challenging, especially
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when there are many potential datasets to navigate [22,78]. Even when
data exist, gaining access to data and being permitted to integrate and
transform data can be challenging [21, 60].

While the majority of data science work will use real data, there
are situations where, as part of data preparation, new data must be
generated. Data creation is the process of creating new data that
cannot be collected or directly observed [26, 56, 60]. For example, Abt
et. al. [4] highlights the challenges of obtaining the real world data for
cyber security experiment and the way that synthetic data could be used
to inform decision making and not simply to validate methods. Akios
et. al. [41] highlighted the different ways to create synthetic dataset
and the importance of domain expertise in the data creation processes.
Finally Crisan et. al. [21] highlight a case study of synthetic data
generation to enable visualization design and evaluation [21]. Synthetic
data has been more commonly used as a way to validate downstream
modeling and techniques [23], but we argue that the role of synthetic
data to inform decision making is also a valid use of such data and one
that is often overlooked. Finally, we believe it important to distinguish
between our use of data creation here and the derivation of new data via
data transformations. When there does not exist a dataset and one must
be generated, then we refer to this as a process of data creation. When
a data set exists, but transformation methods are applied to it to derive
new dataset or features then we consider this to be a data wrangling
process.

Profiling is the process of assessing attributes (individually and
jointly) to understand the distribution of their values, identify missing
values, and examine their associations with other attributes. Profiling
is tightly coupled with assessing data quality and undertaking steps
to understand data content [36, 84]. Prior data science models use
a myriad of terms to describe profiling, such as as ‘pre-processing’,
‘tidying’, ‘cleaning’, ‘wrangling’, ‘exploratory data analysis (EDA)’,
or ‘data understanding’ [30, 38, 84]. We found evidence that data
visualization is often used in profiling to create “very simple plots
of EDA — histograms, scatterplots, time series plots” [23], implying
that profiling involves simple plots of univariate and bivariate of data
distributions.

Data Wrangling is the process of shaping and transforming data so
that it is suitable for analysis [36]. It is perhaps the best known of the
preparation processes. Data wrangling has also been called ‘tidying
data’ [30]. We separate profiling from wrangling because we consider
profiling to be the process of understanding and assessing the data,
while wrangling is the process of acting on profiling knowledge by
shaping or transforming data.

5.1.1

The data science literature identifies a role for visualization in the pro-
filing and wrangling of data. In this area, Kandel et. al. [36] produced a
highly influential study that others within and beyond the visualization
research community have built upon including Kandel et. al.’s follow-
on work, the Profiler system [37]. Visualization research has also
touched upon other preparation processes. As for defining needs, there
exists a body of methods, primarily centered around design studies [73].
However, these methods are intended for visualization researchers and
have not been adopted by data scientists. Given that data scientists
often develop their own visualizations, they may benefit from these
methods. Visualization researchers have also explored data gathering
and creation, but to a lesser degree. Crisan et. al. [22] highlight the
challenges that analysts face when confronted with a complex data
landscape and showed the present gaps in visualization research toward
helping data scientists with these challenges. Finally, while there is
some visualization research on data creation, it is our assessment that
most of this research is geared toward volume rendering rather than the
generative modeling processes used by data scientists [23].

We also noted that the use of visualization for EDA is more narrowly
defined toward profiling, compared to visualization research that ap-
plies EDA more generally [10]. We argue here that it is important to
differentiate between an initial probing of the data to assess its qual-
ity and suitability, which we call profiling, and a more surreptitious
exploration, which we consider to be an analysis.

Data visualization in preparation

5.2 Analysis

Analysis processes take (ideally prepared) data and apply statistical and
computational techniques to derive insights from the data. These pro-
cesses are arguably the heart of data science. Modeling tends to receive
the most attention of all analysis processes, but it is in reality a rela-
tively small part of data science work overall [19,23]. We synthesized
five analysis processes: experimentation, exploration, modeling, ver-
ification, and interpretation.

Experimentation is a processes evaluating a cause-and-effect hy-
pothesis, and one where the analysts exerts considerable control over
the administration of some intervention (i.e. website layout, a visual
encoding). In it’s simplest form this kind of hypothesis verification can
involve the application of standard methods of null hypothesis testing.
Experimentation can have a closely coupled relationship with data gath-
ering when experts collect data specifically to test a hypothesis, such
as is often done in A/B tests and other variations of randomized trials.
It is important here to distinguish between the colloquial use of the
term ’experiment’, which can mean to tinker with or try out something,
compared to the more constrained definition we use here that relates to
the process to setting up and executing a specific experiment.

Exploration seeks to uncover new insights from data that, unlike in
experimentation, were not predetermined from the outset. This does
not mean that data scientists do not have some specific question in
mind, but rather that the data itself is not gathered for one specific
purpose. Our definition of exploration is actually quite narrow here and
excludes the initial ‘getting to know the data’ type exploration, which
we attribute to the profiling process. In several data science models, the
process of exploration is also more general and encompasses modeling
(Grolemund and Wickham’s model [30] for example). Model driven
exploration can result in new hypotheses being generated from the data.
Visual exploration of the data can also drive hypothesis generation [6,
10, 10], but we did not find much evidence that exploratory visual
analysis is used much beyond profiling. While exploration is valuable,
it is also often discouraged, primarily to avoid p-hacking [23].

Modeling is the process of applying statistical and computational
techniques to derive an actionable insight from data.Although we
present the modeling here as a discretized process, we acknowledge that
it overlaps with experimentation and exploration. We differentiate mod-
eling from these processes in two ways. First, we consider modeling to
apply to data that has not be gathered under experimental conditions.
We argue it is worth making this distinction as experimental data has
different properties compared to routinely gathered data. Second, we
also wanted to capture a common set of tasks associated with creating,
tuning, and selecting models that are separate from exploring data.

The data science literature has identified four primary models: de-
scriptive, diagnostic, predictive, and prescriptive [15,23]. Descriptive
modeling, also sometimes called explanatory modeling, summarizes
the present state of the data. For example, descriptive modeling can
inform a regional sales manager that her sales are down this quarter.
Diagnostic modeling attempts to assign some root cause to an observed
outcome, for example, identifying why sales are down this quarter.
Predictive modeling, as the name suggests, attempts to predict some
future outcome; for example, that sales will also be down the next
quarter. Forecasting is a subset of predictive modeling that is specific
to time-series data. Finally, prescriptive modeling identifies a specific
intervention that can be taken to modify future outcomes; for example,
if the sales manager hires more people, her sales will increase. Pre-
scriptive modeling is extremely useful, but it is difficult to execute as it
relies on well-established gold standard datasets (sometimes, but not
exclusively, derived from experimental studies); the necessity for such
a gold standard datasets is that, in order for prescriptive model to be
useful it must have an established set of cause and effect relationships to
learn from. While these four types of modeling can all involve different
underlying statistical and computation techniques, they all share some
common model development tasks; feature engineering, tuning, and
optimization are some examples where the particulars may differ based
upon on the type of modeling [81]. Visualization can also be used
to verify that the data satisfy the modeling assumptions and that the
outputs make sense [30, 54]; this could be called “model profiling”.



Verification is an evaluative process to confirm the robustness of
the results, code, and models [19,38, 81]. Importantly, this verification
process must make assessments toward external and ecological validity,
whereas assessments of internal validity should be carried out in the
modeling process. For example, a withheld or ideally newly generated
dataset enables assessments of the external validity while the traditional
train/test split of the data can verify only the internal validity. It is
also emerging that verification is increasingly important to assess the
fairness and transparency of data science processes [50, 81].

Interpretation is the process of understanding the results of an ex-
periment, exploration, or model in terms of real world applications. The
interpretability of analysis processes can be limited by the ‘black box
nature’ of both complex models and datasets, which impacts how data
science results can be safely deployed and used by others [50]. Few
data science models that we investigated contained an explicit inter-
pretation step and some combined both verification and interpretation
with modeling [8, 14,23, 38]. Visualization has an emergent role in the
area of interpretation, especially toward explainable machine learning /
artificial intelligence systems [34].

5.2.1 Data visualization in analysis

The data science literature is inconsistent on the use of visualization
in analysis. Visualization appears often as a “sidekick” to modeling
processes and is often limited to simple static charts. In contrast, visu-
alization research appears to be highly engaged in data science analysis
processes, with interactive visual analytics tools for exploration, mod-
eling, and increasingly interpretation. Battle et al. [10] succinctly
describe the prior art in exploratory visual analytics, including applica-
tions relevant to what we consider to be profiling. To address concerns
of p-hacking in these exploratory visual analyses, Zgraggen et al. [90]
and Lee et al. [44] propose mechanisms for penalizing serendipitous
exploration. However, it is not clear from the data science literature
whether strategies for exploratory visual analytics are addressing press-
ing problems for data scientists. Visualization research into modeling
is likewise vast and spans different types of data (text, spatial, network,
etc.) and different applications. One area where visualization research
appears to play an active role is in visualization tools that support model
development; we refer the reader to several in depth state of the art
reports by Hohman et. al. [34], Chatzimparmpas et al. [16,17], and
Yaun et al. [89] for an overview of current techniques and strategies.
One noteworthy tool for visual model development that has bridged
between data science and visualization research is TensorBoard [88].
TensorBoard is a great example of what our two communities can
achieve together. Finally, visualization research is taking tentative
steps towards improving understanding and interpretability of machine
learning models. This is best exemplified by work presented in the
VDS symposia and VisXAI workshops and in the contributions of VIS
researchers to publications like Distill (https://distill.pub/).

5.3 Deployment

Within many organizations, data science work extends to a phase where
data preparation and analysis processes are routinely put into produc-
tion and deployed to tackle real-world problems [39,54,59,81]. We
synthesized two deployment processes: monitoring and refinement.

Monitoring is the passive observation of productionized data sci-
ence processes to ensure that they behave in consistent ways [14,81].
This could also be considered a surveillance process [59]. Monitoring is
not restricted just to data and models, but includes the computing infras-
tructure that automatically processes incoming data (and increasingly,
the costs associated with that infrastructure).

Refinement is the processes of updating and optimizing analytic
models and data science processes once they have been deployed to
operate on real-world data. Some refinements may happen automati-
cally, such as updating a model with new data, while other refinements
are the direct result of feedback from end users or through monitor-
ing [38,81,84].

5.3.1

The data science literature often ascribes the use of dashboards to mon-
itoring processes, in order to surface and conduct initial investigations
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into anomalous events [59]. Visualization researchers have broadly ex-
amined the use of dashboards, including for operational purposes [69].
However, we could not distill whether operational uses of dashboards
encompass monitoring and refinement of complex data science artifacts
like data, code, analytic models, and computing infrastructure. More-
over, these artifacts change over time and the specific challenges this
introduces are not fully described in prior visualization research [69].
There do exist systems that, although not described as dashboards,
could approximate the needs of data scientists in monitoring processes.
LiveRAC [53] and EventFlow [58] are two examples of systems that
provide high level overviews of temporal trends and, in different ways,
allow a user to drill down and examine anomalies.

5.4 Communication

Communication is a cross-cutting set of processes within data science
work that is essential to the circulation of artifacts and knowledge.
We synthesized two communication processes: documentation and
dissemination.

Dissemination is the process of creating and circulating insights sur-
faced throughout the prior data science processes. In other models, dis-
semination has been called ‘communication’ [30], ‘reporting’ [36,87],
or ‘presentation’ [23]. We consider communication to be much more
encompassing than the dissemination of findings and have deemed it
to be a higher-order process. In the data science literature, reporting
is about creating documents, often static, that summarize data science
work and its findings. However, dashboards are also a widely-used
reporting method [23]. While reporting can be about presenting find-
ings, it also refers to the act of delivering a presentation, again often
accompanied by some visual aids. We consider dissemination to en-
compass both reporting and presentation. There is a broad consensus
that visualization plays an important role in dissemination [23].

Documentation is the processes of generating a record that de-
scribes and synthesizes data science work and its artifacts. There is a
long history in computer science and engineering work of documenting
code, which informs modern data science practices. However, since
data science work and its artifacts include data, code for workflows or
explorations, and models, the nature of documentation in data science
is more complex than in other engineering practices. Computational
notebooks are a relatively new form of documentation that enable a
wide range of interactions [1,64,67,80,91]. Their uptake in the data sci-
ence community, in particular Jupyter notebooks [1,64], demonstrates
their value across data science work. Prior studies advocate for such
notebooks to support reproducible workflows, not only amongst groups
of data scientists but for the individual data scientist as well.

5.4.1

Amongst all the data science literature we reviewed, the greatest con-
sensus on the importance of visualization was for communication. The
data science literature seems to agree with observations by other vi-
sualization researchers [69] on the importance of using dashboards to
provide some interactive engagement, but it does not go much further
toward evaluating whether the dashboards produced by data scientists
serve their intended purpose. In contrast, there has been less focus, in
both visualization and data science communities, on documentation.
Code notebooks are essential to data science work [1,91] and within
them are rich visualizations that document analytic processes and their
results. Finally, the modeling phase grows in complexity, visualization
also serves as an important medium to communicate between humans
and machines [32]. Along with the development of additional metrics
and heuristics visualization is used to support the exposition of decision
making mechanisms behind machine learning, and more recently so
called artificial intelligence, algorithms [5,57,75]..

Data visualization in communication

5.5 Emerging types of data science work

We also identified collaboration and pedagogy as two lower-order
processes that are not typically acknowledged to be a part of data
science work, but we strongly believe that they should be.
Collaboration within data science offers unique challenges due to
the diversity of artifacts and individuals involved in data science work.
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Study Year Size Context Participants
Kandel [34] 2012 35 Industry Wide Data Analysts
Kandogan [36] 2014 34 Industry Wide Data Analysts
Harris [27] 2015 250 Industry Wide Data Scientists
Kim [38] 2016 16 Microsoft Only Data Scientists
Kim [39] 2017 793 Microsoft Only Data Scientists
Batch [7] 2017 9 Government Data Smerytlst
& Economists
Academia Data Analysts
Alspaugh [4] 2018 33 & Industry Wide & Data Scientists
Muller [57] 2019 21 IBM Only Data Scientists
Academia
Wongsuphasawat [82] 2019 18 & Industry Wide Data Analysts
Kaggle [1] 2019 4140  Industry Wide Data Scientist
. Data Scientists
Wang [77] 2019 195 Industry Wide & Others
Zhang [87] 2020 183 IBM Only Data Scientists

Table 1. Studies of data scientists, or data analysts engaged in stated
data science processes, that we analyzed.

We note that these challenges are also mirrored in the growing open
science movement more generally [29,62]. Documentation serves an
important role in generating artifacts that support collaborative pro-
cesses. Although notebooks are the primary means through which data
scientists collaborate, they are not the only means of collaboration.
Project management techniques, borrowed from software engineering,
are commonly used to help data scientists break down “data questions”
into viable tasks [51, 68]. In aggregate, data scientists developed a
Common Task Framework that is shared amongst themselves to accom-
plish data science work [46]. The importance of developing a shared
understanding of tasks is emphasized by Donoho [23], who credits it
as an essential, but underrated, component of data science’s success.

Pedagogy is a part of data science work because of the relative
newness of the field, which necessitates not only active curricula de-
velopment but also surfaces the need for ‘on the job’ training and
mentorship [19,23,63]. Increasingly, data science learning takes place
via massive online open courses (MOOCsSs) with thousands of students
in applied online learning environments [42, 74].

5.5.1 Data visualization in collaboration and pedagogy

The collaboration and pedagogical challenges that arise from data sci-
ence work are often not acknowledged, but we argue that they should
be. Moreover, visualization research could play a larger role in allevi-
ating challenges stemming from these. One area where data scientists
struggle is around the breakdown and sharing of tasks [51,68]. Here
visualization research already offers some potentially interesting solu-
tions. Loorak et al. [48] describe the problem of asynchronous hand-off
in dashboard creation, designing a system to mitigate these problems.
Zhao et al. [92] similarly tackled this hand-off problem with knowledge
graphs; these graphs could be integrated with ideas from Liu et al. [47]
to address collaborative pain points for data scientists. Furthermore,
Sarvghad et al. showed how analytic provenance provides a mechanism
for knowledge sharing that ultimately improves the analysis of data [70].
Toward pedagogy, visualization researchers could play a larger role in
developing a rich curricula for visualization in data science. Visualiza-
tion researchers could also advocate for better pedagogical approaches
for data visualization; recent workshops on visualization pedagogy
have showcased several promising approaches. While often overlooked,
it is also conceivable for visualization to play a larger role in the very
process of teaching data science. Keeping track of students’ progress
and pain points in MOOC environments can be challenging, but this
could be better supported with data visualization tools (e.g. [18,28]).

6 WHO ARE DATA SCIENTISTS?

A surprising finding from our analysis was the diversity among
data scientists and how this related to the nature of the work they

carried out. The role of “data scientist” did not exist more than a
decade ago, yet today is a highly sought after title [11,23]. There
is a general consensus that data scientists have a multidisciplinary
background, but when Harris ef al. [31] conducted a study of data
scientists, they found an impressive array of diversity. Their findings
led them to designate four data science roles: developers, researchers,
creatives, and business people. Moreover, Harris demonstrated that
these “data scientists” varied in terms of the data science processes
they carried out and their technical and domain expertise. They astutely
observed that this diversity can “lead to poor communication between
data scientists and those who seek their help”. Follow-on studies
([24,25,39,40,91]) and commentaries on data science work [11,15,23]
have confirmed Harris’ findings and identified additional data scientist
roles.

In this section, we analyze twelve studies of data scientists (Table 1)
and from these synthesize a total of nine data science roles (Table 2).
Commensurate with previous studies, we also illustrate the expertise
of these roles in statistics, computer science, and specific application
domains. Additionally, we include human-centered design (HCD) in
this analysis. An HCD skill set is increasingly importantly to help data
scientists translate their findings in communication with stakeholders
and end users [7,11], but this is an area of expertise where they receive
the least training. We argue that the relationship between roles and
expertise to influences the types of visualization tools that data scientists
may need. For example, an ML/AI engineer and moonlighter could both
be engaged in a tasks of model tuning and selection, but the engineer
(who has more expertise in computer science and statistics) will need
a different kind of visualization tool compared to a moonlighter who
does not have this expertise. Critically, these different roles that we
define here may all be classified as ‘data scientist’ organizations; titles
such as ML/AI engineer or Data engineer are more recent and born
our of growing organizational maturity toward data science. Thus, if
visualization researchers do not recognize the diversity within data
science roles, there is the risk of forming inaccurate or incomplete
understanding of data science work in our studies. However, we also
acknowledge that classifying individuals solely on their expertise can
create artificial divides, when in reality there exists more fluidity within
these roles. Thus, we urge readers to use our summaries in Table 2 as a
guide for their own investigations as opposed to a ground truth.

To further situate these data science roles within the visualization
research literature, we also cast them according to the collaborator
terminology developed by Sedlmair et al. [73]. Importantly, these data
science roles help provide context to the nature of data science work. As
we will show, the different data science roles carry out different types
of data science work and are likely to benefit from different tooling
support. Thus, understanding these roles is essential to grounding
visualization research.

6.1

We define nine data science roles that operate within the higher order
processes we defined in Section 5. Individuals who carry out work
across all data science processes tend to be generalists, but it is currently
more common for data scientists to specialize and work collaboratively
as a team.

Data Stewards and Shapers primarily conduct preparation pro-
cesses to govern the access and use of data, as well as to set up data for
use by other analysts [39,87,91]. In terms of the visualization litera-
ture, these roles serve as gatekeepers [73] because of their oversight
of data. Data stewards have deeper domain knowledge that enables
them to delineate the use of data and also attend to organizational and
regulatory constraints that dictate its use and reuse [21]. Data shapers
also have domain knowledge but will have a more computational back-
ground that is required to capture, create, shape, and transform data
for analysis [40]. It is worth noting that there are other interesting data
preparation roles that are not typically associated with the role of data
scientist. One study on data preparation [49] identified the roles of Data
Librarians and Archivists; we consider these two roles to be a part of
the larger data science community of practice. Both data stewards and
shapers need to understand the provenance or lineage of data, as well

A breakdown of data science roles



Process Role Role Description
o) Domain expert responsible for governing
L Data Steward access and use of data

Preparation

Data Shaper and preparing data for analysis

Engineer proficient in developing Data Science
technologies, including data preparation and
analysis pipelines

Data Engineer

Deployment
& Engineering S ML/AI Engineer proficient in developing and deploying
W Engineer machine learning / artificial intelligence methods to
support data science processes
& Generalist Multidisciplinary individual focused solely on data

science

(=) Research
Analysis Scientist
Technical A technical individual from whom data science
&0 echnica is not core to their job but occurs only at the
Analyst margi
gins of other work

Moonlighter Non-technical individual tasked to perform data

Manager, team leader, or analyst tasked with

Communication 'ﬂ' Evangelist disseminating findings from data science work

Developer responsible for supporting the curation

A domain expert involved in research typically with
technical expertise in ‘Data Science’ technologies

science duties, either voluntarily or through necessity

Level of Expertise

Human
. . Computer Domain Cen_tered
In prior Studies Statistics ~ Science  Knowledge Design

Data Broker [87]; Data Owners [84]

Data Shaper [38]; Data Preper [38];

Platform Builder [38]; Data Developer
[27]; Hacker [35]; Scripter [34];
Engineer [57]; Bl engineer [84]

Hacker [33]; Modeling Specialists [38]

Polymath [39]; Data Creative [27]

Data Researcher [27, 57]; X-
informatician [12]

Data Analyst [4, 38, 39, 57, 84]; Application
User [35]; Business Analyst [36, 57]; Data
Business Person [27]; Analysis Team
Members [84]

HE B OO0
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Moonlighter [39]

Data Evangelist [39]; Communicator
[87]; Insight Actor [39]

EEEEEN [ E@EfdN
Do onb 0O odn

[]
L]
[]

Table 2. Summary of data science roles and an illustration of their skill sets. Data science skills were classified along four axes: statistics, computer
science, domain knowledge, and human centred design. We use a color gradient to illustrate a level of expertise: proficient ll; knowledgeable M;

working ; and little to none.

as how it is being used and by whom. Data visualization may be useful
to help them understand the freshness and quality of their existing
data. Shapers are more likely to need tools to manipulate data, assess
data quality, and facilitate data transformation and shaping. Finally,
both groups would benefit from tools that help them understand the
landscape of available data and whether what is available satisfies the
needs of analysts making data requests.

Data Engineers and Machine Learning / Artificial Intelligence
(ML/AI) Engineers primarily work within deployment processes but
also engineer systems that facilitate data science work in general. In
the terminology of the visualization literature, these roles represent
fellow tool builders [73] who, among other things, are capable of de-
veloping their own standalone data visualization tools or effectively
using charting libraries in various programming languages. Data engi-
neers [23,31,40] ensure that artifacts can move seamlessly across data
science processes and can scale to changing demands on the system, es-
pecially in situations where organizations have massive volumes of data.
Data engineers tend to have a stronger background in computer science.
ML/AI engineers tend to focus much more on the modeling phase
of the data science process and tend to have a stronger background
in statistics. Engineers have highly specialized needs of data science
and visualization tools. There is space for visualization researchers to
collaborate with engineers in well defined projects; a good example
is TensorBoard [88]. There are also opportunities for visualization re-
search to support improved monitoring and refinement of data science
processes in the development and production life cycles. As we indi-
cated in Section 5, there are interesting opportunities for visualization
researchers to think more deeply about how complex artifacts like code,
data, and models can be effectively summarized over time.

Generalists and to some extent Researcher Scientists are what
might be considered the prototypical data scientist. These individuals
have a broad multidisciplinary skill set [14,31,40] that includes domain
knowledge and increasingly, skills in human-centered design. While
these individuals are primarily situated within analysis processes, they
can be dropped into others as needed. Individuals may be generalists
by necessity, especially since many organizations do not know how
to support data scientists or even what is involved in data science
work. However, as organizations evolve, generalists are likely to be

supplanted by specialists. Individuals who hold these data science roles
can be classified by visualization researchers in various ways, such as
front-line analysts or fellow tool builders [73]. Generalists can also
play a vital role as translators, because they typically have advanced
knowledge and expertise across domains. The visualization needs for
generalists and research scientists can mirror those of data and ML/AI
engineers. However, these roles may be more tolerant to early-stage or
less developed prototypes, whereas engineers may require more mature
solutions.

Technical Analysts and Moonlighters are classified as data scien-
tists by their organization because they use data tools to accomplish
their domain-specific tasks [31,40,87]. In the terminology of the visual-
ization literature, these roles are front-line analysts [73] or individuals
who might be classified simply as domain experts. Although these
individuals occupy a data science role, they are less likely to have
received technical training. Moonlighters [39,40] are an especially
interesting group who only engage in data science work intermittently.
These individuals may spend anywhere between 25% and 50% of their
time engaged in analysis [40]. Technical analysts and moonlighters
represent data science roles that could most benefit from analytic as-
sistance. As such, they may make the greatest use of visual analytics
tools that assist them in their analysis and help them to contextualize
the results of machine learning algorithms.

Evangelists represent a growing and important data science role
in communication processes. In the terminology of the visualization
research literature, they are connectors and translators [73]. These indi-
viduals work closely with data science teams and other stakeholders to
evangelize and contextualize the results of data science work. Because
of their role, evangelists must have at least high-level knowledge of
statistics, computation, and the application domain. These individuals
may be managers as well as individual members of a team. “Insight
actors” [40], whose primary objective is identifying and disseminating
actionable data insights, is another interesting way to define this group.
What sets evangelists apart from other roles is that they are more likely
to be translators of data science artifacts (data, results, models) and not
active developers of these tools. Evangelists need tools to help them
interpret these artifacts, often generated by others, and to circulate their
findings to stakeholders. Some existing visualization tools could extend



to the needs of evangelists. However, the literature is also much more
primed toward analysts, such that we have incomplete knowledge of
evangelists and whether their needs are met by visualization tools.

6.2 On data science tools

Two of the studies that described data scientists made detailed assess-
ments of the tools used for analysis and collaboration [1,91]. They
found a clear preference among data scientists for notebook environ-
ments and identified the importance of seamless transitions between
data science processes and tools. In order for visualization research
to have greater influence in data science, our contributions will likely
need to integrate with these existing tools. An example of one such
successful integration is UpSet, which was redeveloped as an R pack-
age a few years after the original publication and experienced wider
adoption [20,45].

7 DiscussiIoN

A better understanding of data science work and the diversity of data
science workers will support visualization researchers to identify oppor-
tunities for collaboration and innovation. Our modeling of data science
work and workers is intended to arm visualization researchers with
the means to educate, converse, and collaborate with data scientists
and others in the larger data science community of practice. Visual-
ization research has a lot to offer, including best practices, techniques,
methodologies, and systems. In turn, there is much that visualization
researchers can learn from data scientists.

We encourage visualization researchers to use our model of
data science work and breakdown of data science roles in their
own investigations. The prior art in visualization research literature
has relied primarily on interview studies to elicit the nature of data
science work (i.e. [6,9, 36, 87]), which while rich capture a specific
segment of data science work. We build on these results and others
to develop our model of data science work. Using our findings as a
working base, researchers can, for example, explore data that is being
handed off between lower order processes, or characterize who data
scientists are and how they use visualization, with a greater degree of
specificity than was afforded by previous work. We ourselves intend to
use the results of this research to inform our future study development
and analysis processes. We anticipate that this model will continue to
evolve over time, and we encourage others to elaborate (or contradict)
our work so that all may learn. As we conducted our investigations,
we also surfaced specific research avenues for visualization research in
data science that we highlight in this discussion.

7.1 Visualization to support data science work

Visualization research should seek to support underserved data
science processes. We suspect that the visualization research litera-
ture emphasizes exploration and modeling processes, much like the
data science literature does [23], and places less emphasis on other
data science processes.There do exist important and interesting ways
that visualization research can support exploration and modeling. But
looking beyond these processes can help us work together with data
scientists to surface other, potentially more pressing, pain points in
their work and either amplify existing visualization solutions or de-
velop new ones. Moreover, visualization researchers bring knowledge
and methodologies of human-centered design practices, which is a skill
of increasing relevance to data science. Another challenge that the data
science community is grappling with is developing techniques to learn
from large, diverse real-world data that are reproducible, responsible,
and ethical [50]. As an example of this conversation, consider the multi-
disciplinary ACM FAccT (Fairness, Accountability, and Transparency)
Conference. This conversation is one among many that recognizes the
importance and contributions of human interpretation and perspective
throughout the data science lifecycle [61]. Human-centered design be-
comes critical in this new frontier of data science work and visualization
researchers can play a role as partners and knowledge translators.

7.2 Visualization to innovate data science work

Data science encompasses a diverse set of roles and processes.
Rather than build for a data scientist, as if all of data science ex-
ists within an individual, drive innovation by building for a data
science community of practice. Viewing data science as a community
of practice highlights the collaborative and multidisciplinary nature of
the work and recognizes that a broader set of people might engage in
aspects of data science work without identifying as data scientists [82].
Our findings allude to this community of practice through the tech-
nical analyst, moonlighter, and evangelist roles. However, the data
science community of practice encompasses a broader range of roles
that we have not articulated in our research. As data science work is
increasingly understood as sensemaking about our world, it becomes
imperative to include diverse voices and domain knowledge engaged
in doing data science work [61]. In many ways, visualization has
an opportunity to catalyze more robust human-centered approaches
throughout the data science lifecycle [S5]. However, these solutions
will only be effective if they can integrate with the myriad of tools used
and perspectives across the data science community of practice.

One particular challenge that our investigation surfaced was the
effective sharing of knowledge and artifacts throughout data science
processes and amongst data scientists and their larger community of
practice. While it was evident that data and code need to be shared
across data science processes, it is less obvious that tasks also needed
to be shared. Effective task sharing is a common problem amongst
data scientists that is critical to the success of data science (Section 5)
and one that lacks effective solutions [23,51, 68,91]. We conclude
that data scientists not only struggle to define a concrete taxonomy
for describing tasks, but also lack a consistent way to break them
down [51,68]. Handing off tasks to other individuals within and across
data science processes is also complex, and increasingly there is the
need to hand off tasks between people and autonomous systems. The
problem space of task sharing provides an interesting opportunity for
mixed-initiative visualization systems [32] to serve as an intermediary
within the data science community.

7.3 A virtuous cycle of collaboration

A virtuous collaborative cycle is one where both communities
learn from each other. While we emphasize here the ways that visual-
ization research can impact data science, we would be remiss if we did
not also acknowledge there is also much that we can learn from data
science. We have indicated throughout that data scientists do routinely
visualize data, but the visualization research community knows rela-
tively little about the visualization artifacts they create, how they create
them, and how these are used. Our understanding of how visualization
is used with notebook environments is also relatively sparse. Moreover,
data scientists in all roles have a deep understanding of data that could
augment our own understanding of different data types, how they are
integrated together, and how they are analyzed. Finally, data science
processes produce varied and complex artifacts that, if examined closely
in partnership with data scientists, could launch new and exciting joint
research trajectories.

8 WHERE DO WE GO FROM HERE?

Data science is a complex multidisciplinary field carried out by
teams of people with varied backgrounds and roles. The discipline
of data science has experienced rapid growth in the last decade and
the myriad of people and processes involved in this work are not well
supported by existing tools. While we have shown that visualization
research touches all of the data science processes, the actual use of
visualization is, from our assessment, limited. We believe it important
that visualization researchers engage more directly with data scientists
and seek out opportunities for mutual collaboration that advance both
of our communities. Yet without a more concrete idea of what data
science is, it can be complex to initiate such partnerships. With this
work, we sought to provide some more concreteness to ambiguous
nature of data science. We now invite you, our reader, to take the next
step. Befriend a data scientist. Share your knowledge and learn from
them in return. Embark on a joint project and then expand it into a long
and fruitful collaboration.
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