
Just-in-time Length Specialization of Dynamic Vector Code

Justin Talbot

Tableau Software

jtalbot@tableausoftware.com

Zachary DeVito

Stanford University

zdevito@stanford.edu

Pat Hanrahan

Stanford University

hanrahan@cs.stanford.edu

Abstract

Dynamically typed vector languages are popular in data analytics
and statistical computing. In these languages, vectors have both
dynamic type and dynamic length, making static generation of ef-
ficient machine code difficult. In this paper, we describe a trace-
based just-in-time compilation strategy that performs partial length
specialization of dynamically typed vector code. This selective
specialization is designed to avoid excessive compilation over-
head while still enabling the generation of efficient machine code
through length-based optimizations such as vector fusion, vector
copy elimination, and the use of hardware SIMD units. We have
implemented our approach in a virtual machine for a subset of R, a
vector-based statistical computing language. In a variety of work-
loads, containing both scalar and vector code, we show near au-
tovectorized C performance over a large range of vector sizes.

Categories and Subject Descriptors D.3.4 [Processors]: incre-
mental compilers, code generation

General Terms Design, Experimentation, Performance

Keywords R, just-in-time compilation, tracing, data parallelism

1. Introduction

The rise of big data has increased the demand for domain specific
languages designed for data analytics and statistical computing.
The most popular of these—R [17], Matlab R© [2], and NumPy (a
library for Python) [9] —are dynamically typed, vector- and array-
based languages. These languages are productive and user-friendly:
dynamic typing supports their use in iterative, exploratory program-
ming, and vectors and vectorized operations permit concise expres-
sion of common analytic tasks, such as tabular data processing and
linear algebra. Unfortunately, efficient execution of these dynamic
vector languages is not straightforward; R, for example, runs two
orders of magnitude slower than well written C [14, 18].

In addition to the standard difficulties in dealing with dynamic
types, compilers for vector languages have to deal with dynamic
lengths. Without static length information, it is difficult to generate
efficient machine code. In particular, short vectors—used in vector
languages to represent scalars and small data structures—suffer
from considerable runtime overhead. Their dynamic length implies
that they cannot be allocated to hardware registers, and extra code,
such as length checks, has to be generated to support them.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

ARRAY‘14 June 11 2014, Edinburgh, United Kingdom
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2937-8/14/06 $15.00.
http://dx.doi.org/10.1145/2627373.2627377

To execute short vector code efficiently, this paper describes a
trace-based just-in-time compilation approach that performs partial
specialization of vector lengths. As in other trace-based systems,
we record and compile frequently executed bytecode sequences
(“traces”), but our traces contain both scalar and vector instruc-
tions, and lengths are recorded using a dependent type system. In an
optimization pass, we selectively specialize the dependent lengths
while attempting to balance increased performance due to special-
ization with the resulting increase in compilation overhead. This
pass uses two heuristics—specializing very short vectors and spe-
cializing sets of vectors that are likely to share the same length.
Each is motivated by an analysis showing that these properties are
very stable in R programs. The specialized length information is
then used to perform length-dependent optimizations: vector oper-
ations are fused, very short vectors are assigned to hardware vector
units, and longer vectors are assigned to shared heap locations.

We have implemented this approach in a virtual machine which
supports a subset of the R language. We evaluate our approach on
a variety of R workloads and find that we can achieve performance
near that of autovectorized C across a relatively wide range of
dynamic vector lengths. This is one to two orders of magnitude
faster than the open source R implementation.

2. Example

To better understand the problems that arise in executing short
vector code in R, consider the example shown in Figure 1 that
computes the option pricing for an American put. This model has
no closed form solution, so iteration over n discrete time steps is
used to approximate the result.

In R, the lengths of americanPut’s parameters are not stati-
cally known. This function can be called at runtime with scalars, in
which case this function computes the price of a single option. Or
called with vectors, in which case this function computes multiple
option prices in parallel. Both uses are plausible and both may arise
in a single analytic session. For example, the user may first call this
function with medium-length vectors and a small n to roughly eval-
uate a number of possible options, and then may call the function
again with short vectors and a large value of n to more accurately
evaluate a few interesting positions. A further complication is that
vector languages typically allow users to mix vectors of different
lengths by applying automatic rules to make the vectors “conform”
in binary or ternary operators. For example, R uses the recycling
rule which automatically repeats shorter vector operands to the
length of longer operands. Thus, the semantics of the language al-
low the lengths of americanPut’s parameters to vary arbitrarily
and the run time must be able to handle all possible length com-
binations. While we could generate generic code that could handle
all these combinations, it would necessarily be quite slow. Alter-
natively, we could statically generate specialized variants for all
possible length combinations, but this would be prohibitive in both
time and space.

americanPut <- function(S, K, up , p0 , p1 , n)
{

compute initial values
t <- ...

iteratively propagate values
for (j in n:1)

for (i in 1:j)
t[[i]] <- pmax(

p0*t[[i]] + p1*t[[i+1]],
K - S*up^(2*i-j))

t[[0]]
}

Figure 1. Vector R code for computing the value of an American
put using the binomial option pricing model. If the parameters
passed to this function are scalars, it evaluates the price of a single
option. But if the parameters are vectors, the code computes the
price of multiple options simultaneously.

We address these problems with a trace-based just-in-time com-
pilation strategy combined with partial length specialization. Our
goal is to specialize just enough to get high performance out of the
resulting compiled code, but not so much so that compilation costs
overcome the performance gains. The next two sections describe
our tracing and partial specialization approaches.

3. Tracing Vector Code

Two principal approaches have been suggested for JIT compilation—
function-based and trace-based. A primary question in the design of
a new JIT is which approach to use. While trace-based approaches
have recently been applied with some success to languages such
as Lua [15], Python [5], and Javascript [7], recent developments in
Javascript have shifted to function-based approaches [1]. Despite
this, we use a trace-based approach, primarily because tracing,
combined with guard elimination, creates straight-line code which
is ideal for vector fusion. Additionally, there are a couple of reasons
to believe that tracing may be more effective on vector languages
than on scalar languages. First, tracing typically struggles with
executing nested loops well. But vector operations eliminate the
innermost loop of computatation, generally reducing the nesting
depth of code. Second, while, tracing has a hard time with control
flow divergence, most vector languages include vector blend or se-
lect operations which can eliminate some control flow in favor of
conditional moves or predicated instructions.

3.1 Vector Traces

Our virtual machine begins executing the code from Listing 1 in its
interpreter. When a loop becomes hot, we begin recording the exe-
cuted instructions into a trace. This is done by patching the dispatch
table to first record the instruction in the trace before executing it.
Traces are recorded in a typed low-level IR (LIR) in Static Single
Assignment (SSA) form [6]. In many vector languages, including
R, vectors have value semantics, so our LIR also represents vec-
tors as first-class values. The LIR instruction set includes vector-
style operations (e.g. maps, reductions, gathers, scatters, and broad-
casts) along with more typical instructions such as loads and stores
from environments, boxing and unboxing of interpreter values, and
guards. Since our trace does not have any branching control flow,
φ nodes are only inserted at the end of the trace to represent loop
carried dependencies.

Listing 2 shows a snippet of the trace of the inner loop in
americanPut corresponding to the expression K - S*up^(2*i-j).
Some bytecodes in our interpreter translate directly to a single in-
struction in the LIR, but others are expanded into multiple instruc-

load K
v10 := 1 -> value load ‘K’
v11 := 1 -> [int x 1] length v10
v12 := 1 -> [dou x v11] unbox v10 ->>

load S
v13 := 1 -> value load ‘S’
v14 := 1 -> [int x 1] length v13
v15 := 1 -> [dou x v13] unbox v13 ->>

compute up^(2*i-j)
...
v24 := 1 -> [int x 1] length(up^(2*i-j))
v25 := v24 -> [dou x v24] value(up^(2*i-j))

compute K - S * up^(2*i - j)
v29 := 1 -> [int x 1] max v14 v24
v30 := v29 -> [dou x v29] recycle v15
v31 := v29 -> [dou x v29] recycle v25
v32 := v29 -> [dou x v29] mul v30 v31
v33 := 1 -> [int x 1] max v11 v29
v34 := v33 -> [dou x v33] recycle v12
v35 := v33 -> [dou x v33] recycle v32
v36 := v33 -> [dou x v33] sub v34 v35

Figure 2. Simplified snippet from the trace of the inner
loop of americanPut corresponding to the expression K -
S*up^(2*i-j).

tions to conform to the SSA format or to permit later optimizations.
For example, loading a vector variable, such as K or S in Listing 2,
is split across three instructions. This allows us to represent the
vector length (v11) and the pointer to the unboxed vector (v12) as
separate nodes in the SSA form. Similarly, when recording binary
and ternary operators we emit additional recycle instructions that
make R’s vector conformance rules explicit (e.g. lines v29–v31).
Our length equality specialization optimizes some of these away
(Section 4.1).

As in other type-specializing JITs, every instruction in the
LIR trace is strongly typed. Except for the special value type,
which represents boxed values from the interpreter, our LIR types
take the form: <ilength> -> [<eltype> x <length>], where
<ilength> is the instruction’s iteration count and [<eltype>
x <length>] gives the element type and length of the resulting
vector. For example, in the snippet above, the type of value v11:
1 -> [int x 1] means that length is a scalar instruction (itera-
tion count = 1) and it returns a scalar integer.

The length information in the types can be dependent on previ-
ous instructions. The type of v12: 1 -> [dou x v11] means that
this unbox is a scalar instruction that returns a double vector whose
length is the result of instruction v11. Using dependent lengths al-
lows us to avoid specializing lengths in the trace while recording.
Our constant length specialization pass uses information from the
entire trace to selectively replace dependent lengths with concrete
values (Section 4.2).

To allow dependent lengths on instructions that might change
the length of a vector, our LIR includes a paired instruction that
computes the new length. For example, since R allows assignment
beyond the end of the vector (handled by the LIR scatter instruc-
tion), the LIR also includes a scatter length instruction which
computes the length of the resulting vector as the maximum of the
old length and the new indices.

If the trace successfully completes a loop, the trace is handed
off to our JIT compiler which performs length specialization, opti-
mization, and then code generation.

3.2 Early Optimizations

While tracing, and immediately afterward, we perform a small set
of early optimizations to make the length specialization pass de-
scribed in Section 4 more effective. Key among these are constant
propagation (to propagate constant length information), redundant
load elimination, and common subexpression elimination.

To support dynamic creation and deletion of local variables (a
feature of languages, like R, that unify function environments and
hash tables), we model local variable loads and stores explicitly in
the trace. If these opaque memory accesses remain in the trace, they
will block later optimizations, including the length specialization
pass. To address this, we use a language-specific alias analysis pass
to eliminate most redundant loads from the trace.

After recording the trace we peel the first iteration of the loop
and perform a common subexpression elimination (CSE) pass.
Inspired by LuaJIT and PyPy [3], this combination of optimizations
allows us to handle loop invariant code motion as a side effect
of CSE. By eliminating redundant code, CSE can prove that two
dependent lengths are necessarily equal, which improves the results
of the subsequent length specialization pass.

4. Partial Length Specialization

Given the unspecialized trace, the goal of the partial length special-
ization pass is to to get good performance without overspecializing,
which could lead to poor trace reuse and, thus, high recompilation
costs.

To understand which specializations would be profitable, we
instrumented the open source version of R and gathered vector
length statistics for 200 vignettes—sample programs which come
with many R packages to demonstrate their functionality—drawn
from a broad sample of packages posted to CRAN (http://cran.r-
project.org). While not real analysis workloads, the vignettes ex-
ercise a wide range of R’s use cases including simulation, model
fitting, plotting, mapping, etc. Using the abstract syntax tree (AST)-
walking interpreter in the open source distribution of R, we gath-
ered statistics on the operand lengths for R’s built-in binary math
operators. This data led us to use two partial specialization strate-
gies described in the following sections.

4.1 Length equality specialization

As noted earlier, since R supports mixing operands of different
lengths, for each binary or ternary vector instruction we have to
insert code to handle the “recycling rule” which extends the shorter
to the length of the longer. But, in practice, arbitrary mixtures of
vector lengths are not that common. In our instrumented vignettes
we found that the arguments to binary arithmetic operators were
the same length 92% of the time. Further, when an AST node was
observed to have operands of equal length, it had equal length
operands on the next invocation 99.998% of the time (and con-
versely, when an AST node was observed to have operands of dif-
ferent lengths, it also had unequal lengths on the next invocation
99.98% of the time). Thus, despite R’s support for mixing operands
of different lengths, in practice this is extremely rare. Thus, the goal
of our length equality specialization pass is to eliminate recycle
instructions that are unlikely to be necessary.

We first iterate over the recycle instructions and consider
whether to specialize the input and output lengths to be equal, using
the following criteria:

1. The lengths must have been equal while recording the trace.

2. The lengths must both be loop variant or both loop invariant.

3. The lengths must not be constant.

After selecting pairs to specialize and using union-find to build
equality sets, our second pass propagates this information through

load K
v10 := 1 -> value load ‘K’
v11 := 1 -> [int x 1] length v10
v12 := 1 -> [dou x v11] unbox v10 ->>

load S
v13 := 1 -> value load ‘S’
v15 := 1 -> [dou x v11] unbox v13 ->>

compute up^(2*i-j)
...
v25 := v11 -> [dou x v11] value(up^(2*i-j))

compute K - S * up^(2*i - j)
v32 := v11 -> [dou x v11] mul v15 v25
v36 := v11 -> [dou x v11] sub v12 v32

Figure 3. After specialization under the assumption that all the
parameters to americanPut are the same length, the code is greatly
simplified and opportunities for vector fusion are exposed (e.g. v32
& v36). The generated machine code will be much faster, while the
need for recompilation remains reasonable since the trace can be
reused if vector lengths change systematically.

0%

25%

50%

75%

100%

0 1 [27, 28) [215, 216)

vector length (binned on log2 scale)

av
er

ag
e

p
re

d
ic

ti
o
n
 r

at
e

Vector length stability in R’s binary math ops

Figure 4. Vector length stability for the operands to binary math
operators in R expressed as the percentage of AST node invocations
in which the operand length is that same as the previous invocation
of the the same node. Lengths have been binned into log2-sized
bins. Scalars and very short vectors are stable in math operators,
but stability drops off quickly as lengths increase above 8.

the trace, converting recycle instructions to guards. Many of these
guards will be redundant and can be eliminated during this or a later
optimization pass.

For example, if the input vectors to the snippet shown in List-
ing 2 are all the same length, then the equality specialization pass
and redundant guard elimination will reduce it to the snippet shown
in Listing 3. The now unnecessary recycle instructions have been
eliminated and all vector operations now execute on vectors of the
same length, v11.

4.2 Constant length specialization

Length equality specialization preserves the ability to reuse the
generated machine code if vector lengths change in a structured
way. But since the loop lengths remain generic, the generated
machine code will include loops over the vectors’ dynamic lengths
and vectors will have to be stored in dynamically allocated memory
rather than in registers. To avoid this overhead, we would like to
selectively replace the generic lengths in the trace with constants
so we can emit more efficient code. However, such specialization

will cause us to recompile if lengths change in later invocations.
We used our instrumented vignettes to better understand how well
the operands lengths in one invocation of an AST node predicted
operand lengths in later invocations. The results, shown in Figure 4,
demonstrate that lengths less than 23 = 8 are quite stable.

Additionally, we expect that this specialization will only pro-
vide substantial performance improvements for short vectors where
the loop overhead cannot be amortized well. Our performance ex-
periments (Section 7.2) suggest that, on SSE hardware, specializ-
ing beyond vectors of length 4 does not provide much performance
improvement. Thus, based on both vector length stability and ob-
served performance improvements we only specialize vectors with
1 ≤ length ≤ 4.

4.3 Blacklisting length specializations

Our length specialization choices try to minimize recompilation,
but in some cases may still be overly aggressive. For example, if
there are multiple input vectors whose lengths vary independently,
the total number of traces grows exponentially in the number of
inputs. This scenario is unlikely in typical R code; but to avoid
degenerate behavior in such scenarios, we track the number of side
traces generated in a trace tree that result from length guard failures.
Once this reaches a threshold (8) we blacklist the loop and stop
compiling additional length variations.

5. Length-based Optimizations

After length specialization, our JIT performs a number of ad-
ditional optimizations on the trace including constant folding,
strength reduction, CSE, and code sinking to move code from the
main trace into side exits (inspired by LuaJIT [16]). These opti-
mizations are applied to both scalar and vector operations. We also
apply two optimizations that are dependent on the vector length—a
vector fusion pass, and a vector register assignment pass.

5.1 Vector Fusion

Given operations with the same <ilength>, we can perform vector
fusion—a transformation similar to loop fusion but starting from
vector instructions rather than scalar loops. For short vectors, fusion
eliminates loop overhead. For longer vectors, where instruction in-
termediates exceed the cache size, fusion replaces expensive cache
misses with reads from a register. Our fusion pass simply forms
fused blocks out of adjacent instructions in the trace that have the
same <ilength>. We also perform a liveness analysis pass to avoid
materializing values not used outside of their fused block. During
code generation (Section 6), each fused block is turned into a single
loop over the <ilength>.

5.2 Vector Register Allocation

A scalar JIT has to perform register allocation to assign virtual reg-
isters to the physical registers of the machine. In our vector VM,
vector intermediate values may not fit into machine registers, so
we must place them in memory instead. While we could place each
vector intermediate in its own memory location, this would increase
the workload size, make poor use of caches, and introduce com-
pletely unnecessary vector copies in φ nodes and in, e.g., scatter
instructions. Instead, we do a linear scan register allocation pass
on the SSA trace. Constant length vectors are allocated to stack lo-
cations which may be promoted to machine registers during code
generation. All other vectors are allocated in heap memory. Vectors
which have the same type (including length) and whose live ranges
do not overlap can be allocated to the same heap location. These
memory locations are managed by the compiled trace. They are al-
located when first used, and freed or passed back to the interpreter
when the trace exits.

Stage Time (s) Percent

Early optimizations 0.003 3.2%

Length specialization ≤ 0.001 ∼ 0.5%

Vector optimizations ≤ 0.001 ∼ 0.5%

Generating LLVM instructions 0.002 2.2%

LLVM optimization passes 0.012 13.0%

LLVM code emission 0.074 80.4%

Table 1. Compilation time for BLACK-SCHOLES.

If vector lengths are not loop invariant or are used in an oper-
ation that may resize a vector (e.g. scatter), the size of the heap
allocation may need to change during execution of the trace. To
handle this, we insert length checking code into φ nodes and other
length-changing instructions to check the current allocated length
and to grow it if necessary. To maintain a constant insertion cost,
each resize grows the allocation to the next power of 2.

6. Code Generation

Our code generation pass takes the optimized trace and emits the
high-level control flow—the peeled first iteration followed by a
loop. We then populate the body of this structure one fusion block
at a time. For each fusion block, we emit straight-line vectorized
code, if <ilength> is constant, or a blocked loop over <ilength>
if it’s a dependent length.

For each side exit we generate code to perform any sunk instruc-
tions and then generate code to reconstruct the interpreter state. We
then emit a tail call to a stub function that simply returns control
to the interpreter. Once the side exit is traced, we replace the stub
with a jump to the compiled side trace.

Our JIT currently uses LLVM [12] to generate machine code.
There is considerable overhead in using LLVM; its optimization
and code emission passes take tens of milliseconds for a few hun-
dred LLVM bytecodes (see Table 1). However, using LLVM has
freed us from the need to implement an assembler and we rely on a
few of its optimization passes (e.g. mem2reg) to simplify our code
generation phase.

7. Evaluation

Since we want to demonstrate that we can run a wide range of vec-
tor lengths well, including very short vectors, we created a set of
ten parameterized workloads in which we can vary the input vector
lengths while keeping the total computation constant. We selected a
range of benchmarks covering standard scalar iterative workloads,
standard data parallel workloads, as well as workloads containing
both iterative and data parallel components. Following good prac-
tices for vector languages, we wrote these benchmarks in a vec-
torized style, preferring vector operations such as select to explicit
control-flow where possible. Our benchmark implementations are
available at: http://github.com/jtalbot/riposte/.

Since LLVM is slow, we run the programs long enough to amor-
tize this JIT compilation cost. In a production JIT, we would need
to replace LLVM’s code emission phase with a more performant as-
sembler. The system we used for evaluation is a 4-core Intel Core
i7 with 8GB of RAM, but all the benchmarks use a single core.

7.1 Overall Performance

The throughput of our runtime on the ten workloads is shown in
Figure 5. Along the x-axis of each plot we vary the length of the
input vectors from 1 (scalars) to 216. We compare against R and C.
To get the R results we run the same vector workloads in the 64-bit
version of R 2.15.1, enabling R’s new stack-based interpreter. The

American Put Binary Search Black−Scholes Column Sum Fibonacci

Mandelbrot Mean Shift Random Walk Riemann zeta Runge−Kutta

100
×

101
×

102
×

103
×

104
×

100
×

101
×

102
×

103
×

104
×

 20 28 216
 20 28 216

 20 28 216
 20 28 216

 20 28 216

log vector length

lo
g

 n
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

Performance compared to C and R

Figure 5. Throughput of our runtime (red), optimized & autovec-
torized C (blue), and the open source implementation of R (green)
as a function of the vector length (on log-log scale). Our perfor-
mance is near that of C across a wide range of vector sizes.

C code is scalar code produced by hand fusing the workloads. We
compiled it using Clang version 3.1 with -O3 and autovectorization
flags on. We recompiled the C code for each vector length (by
defining the vector length as a preprocessor symbol) giving the
compiler the opportunity to make length optimizations.

Our JIT does not yet support R’s missing value feature, so
our performance and R’s performance are not directly comparable.
However, we expect the impact of adding missing value support
to our JIT to be relatively small, since it primarily impacts integer
and logical operations which are a relatively small percentage of
these workloads. Our C implementations also do not implement
R’s missing value feature.

In Figure 5, first note that R performs very poorly on very
short vectors due to considerable interpreter overhead, despite its
new stack-based interpreter. Performance improves as the vector
lengths increase since the interpreter overhead is better amortized.
However, R performance never matches C performance, leveling
off when it becomes bound by the materialization of intermediate
vector values.

In contrast, our runtime performs well across the entire range
of input vector lengths. In most cases our performance is slightly
less than C; but in three cases (BLACK-SCHOLES, MEAN SHIFT,
and RUNGE-KUTTA) our performance is actually better due to bet-
ter utilization of the hardware vector units. While Clang’s autovec-
torization failed in these cases, our vector-based compilation strat-
egy was able to take advantage of SIMD units. In the case of FI-
BONACCI, and to a lesser extent MANDELBROT, performance de-
grades for large vector sizes due to a missed fusion opportunity
since we only fuse adjacent vector operations. The RIEMANN ZETA

function computes an exponent which dominates the run time mak-
ing the performance difference between R and C relatively small.
The dip in the middle of the performance curve is related to our call
to pow to compute the exponent, but the exact reason is not clear.

7.2 Effect of Length Specialization

Next we explore how length specialization affects performance.
Figure 6 compares four specialization configurations—no length
specialization (purple), only equality specialization (green), and
equality specialization plus constant length specialization of just
scalars (blue) or of all vectors with length ≤ 4 (red). For most of
our benchmarks, the majority of the performance gain comes from
equality specialization which permits us to eliminate recycling cost

American Put Binary Search Black−Scholes Column Sum Fibonacci

Mandelbrot Mean Shift Random Walk Riemann zeta Runge−Kutta

100
×

101
×

102
×

103
×

104
×

100
×

101
×

102
×

103
×

104
×

 20 24 28
 20 24 28

 20 24 28
 20 24 28

 20 24 28

log vector length

lo
g

 n
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

Effect of Length Specialization

Figure 6. Throughput of our runtime with different length special-
ization combinations. No specialization (purple) has high overhead
and thus low performance. Equality specialization (green) and spe-
cialization of scalars (blue) have large performance impacts. Spe-
cializing vectors with length ≤ 4 (red) leads to more modest per-
formance improvements.

and perform fusion, reducing loop overhead for short vectors and
reducing the working set for longer vectors.

Specializing scalars results in large performance improve-
ments in BLACK-SCHOLES, COLUMN SUM, and RUNGE-KUTTA

due to replacing a generic recycle instruction with a cheaper
broadcast. Specializing scalars results in minor performance im-
provements for short vectors in MANDELBROT and MEAN SHIFT

due to loop overhead elimination.
Specializing longer vectors (up to 4) results in some per-

formance improvement in workloads with tight inner loops—
Fibonacci and Mandelbrot. The effect on other workloads is
minor. Specializing even longer vectors (not shown) results in per-
formance degradations on some workloads due to the resulting in-
struction mix in the generated code. On SSE hardware, specializing
vectors of length ≤ 4 is a good trade off point between improved
performance on some workloads and decreased opportunities for
code reuse.

7.3 Effect of Register Allocation

Figure 7 shows the effect of the vector register allocation pass. In
all workloads vector fusion eliminates most of the vector interme-
diates so only a small number of intermediates actually have to be
allocated on the heap.

The optimization is most effective for the AMERICAN PUT

workload which includes vector updates. Without register alloca-
tion, each vector update requires a copy of the entire vector to
maintain R’s value semantics (the well-known aggregate update
problem). The register allocation pass discovers that this copy can
be safely eliminated. This turns the O(n) vector update into a O(1)
in-place update. The decreasing benefit of this optimization for big-
ger vector sizes is an artifact of our workload design. To keep the
total number of operations the same, we decrease n in AMERICAN

PUT as we increase the vector length.
In the cases of BLACK-SCHOLES, COLUMN SUM, and MAN-

DELBROT the register allocation pass places both sides of a vector
φ node into the same heap location eliminating a vector copy, re-
sulting in a roughly constant performance boost. Additionally this
decreases the working set size, delaying the performance hit due to
exceeding the cache size, visible in the COLUMN SUM and MAN-
DELBROT curves for large vector sizes.

American Put Binary Search Black−Scholes Column Sum Fibonacci

Mandelbrot Mean Shift Random Walk Riemann zeta Runge−Kutta

100
×

101
×

102
×

103
×

104
×

100
×

101
×

102
×

103
×

104
×

 20 28 216
 20 28 216

 20 28 216
 20 28 216

 20 28 216

log vector length

lo
g

 n
o

rm
al

iz
ed

 t
h

ro
u

g
h

p
u

t

Effect of Vector Register Allocation

Figure 7. Effect of our register allocation pass (without–blue,
with–red). We get large performance improvements in the case of
AMERICAN PUT where register allocation eliminates vector copies
resulting from the aggregate update problem. In BINARY SEARCH,
COLUMN SUM, and MANDELBROT register allocation eliminates
a vector copy in a φ node resulting in a smaller speed up.

8. Related Work

Recent work on trace-based JIT compilation has focused on opti-
mizing dynamic scalar languages such as Javascript [7], Python [5],
and Lua [15]. This paper adapts these techniques to vector code.

Our equality specialization pass is similar to the “shape cliques”
technique developed for APL [4], but we use a combination of
runtime length information and data-flow analysis to dynamically
discover vector structure. Dependent types like ours have also been
used for static type checking of array languages [20]. Joisha and
Banerjee propose a graph coloring-based approach to combine
heap allocations in Matlab programs [8], and Lameed and Hendren
present a staged static analysis pass to eliminate array copies in
Matlab [11]. Our vector register allocation scheme solves the same
problem, but is simpler due to our straight line trace.

Kalibera et al. describe an improved AST interpreter for R [10].
Tierney implements a new bytecode-based interpreter for R [19]
and Wang et al. explore techniques for accelerating it [21]. Li et al.
perform incremental runtime analysis to parallelize loops in R
programs [13]. Morandat et al. have studied the semantics and
performance of the current open source R implementation [14].

9. Discussion

We’ve described a trace-based approach for efficiently executing
dynamic vector languages across a wide range of vector sizes from
scalars to tens of thousands of elements. It is based on a set of
partial length specialization passes that enable length-based opti-
mizations, such as vector fusion and vector register allocation. The
resulting virtual machine performs one to two orders of magnitude
faster than standard R, comparable to optimized C. As future work,
our evaluation needs to be extended to show that our approach can
maintain low overhead on real world workloads. This will require
supporting more of the R language, which represents a significant
technical challenge.

This paper has demonstrated that dynamically typed vector lan-
guages can achieve high performance and can effectively utilize
data parallel hardware through just-in-time length specialization
and compilation. For users of such languages, such as data analysts,
this means increased productivity and scalability in the languages
they prefer to use.

References

[1] Google V8 Javascript engine. http://code.google.com/p/v8/.

[2] Matlab. http://www.mathworks.com/products/matlab/.

[3] H. Ardö, C. F. Bolz, and M. Fijałkowski. Loop-aware optimizations in
PyPy’s tracing JIT. In Proceedings of the 8th symposium on Dynamic

languages, DLS, pages 63–72, New York, NY, USA, 2012. ACM.

[4] R. Bernecky. Shape cliques. SIGAPL APL Quote Quad, 35(3):7–17,
Sept. 2007.

[5] C. F. Bolz, A. Cuni, M. Fijałkowski, and A. Rigo. Tracing the meta-
level: PyPy’s tracing JIT compiler. In Proceedings of the 4th workshop

on the Implementation, Compilation, Optimization of Object-Oriented

Languages and Programming Systems, ICOOOLPS, pages 18–25,
New York, NY, USA, 2009. ACM.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4), Oct.
1991.

[7] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ru-
derman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and
M. Franz. Trace-based just-in-time type specialization for dynamic
languages. In Proceedings of the 2009 ACM SIGPLAN conference

on Programming language design and implementation, PLDI, pages
465–478, New York, NY, USA, 2009. ACM.

[8] P. G. Joisha and P. Banerjee. Static array storage optimization in
MATLAB. In Proceedings of the ACM SIGPLAN 2003 conference

on Programming language design and implementation, PLDI, pages
258–268, New York, NY, USA, 2003. ACM.

[9] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific
tools for Python, 2001–. URL http://www.scipy.org/.

[10] T. Kalibera, P. Maj, F. Morandat, and J. Vitek. A fast abstract syn-
tax tree interpreter for R. In Proceedings of the 10th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments, VEE, pages 89–102, 2014. ISBN 978-1-4503-2764-0.

[11] N. Lameed and L. Hendren. Staged static techniques to efficiently
implement array copy semantics in a MATLAB JIT compiler. In
J. Knoop, editor, Compiler Construction, volume 6601 of Lecture

Notes in Computer Science, pages 22–41. Springer Berlin / Heidel-
berg, 2011.

[12] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the 2004 In-

ternational symposium on Code Generation and Optimization, CGO,
Palo Alto, California, Mar 2004.

[13] J. Li, X. Ma, S. Yoginath, G. Kora, and N. F. Samatova. Transparent
runtime parallelization of the R scripting language. J. Parallel Distrib.

Comput., 71(2):157–168, Feb. 2011.

[14] F. Morandat, B. Hill, L. Osvald, and J. Vitek. Evaluating the design
of the R language. In ECOOP 2012 Object-Oriented Programming,
Lecture Notes in Computer Science, 2012.

[15] M. Pall. The LuaJIT project. http://http://luajit.org/, .

[16] M. Pall. LuaJIT Allocation Sinking Optimization. http://wiki.
luajit.org/Allocation-Sinking-Optimization, .

[17] R Development Core Team. R: A Language and Environment for Sta-

tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2011.

[18] J. Talbot, Z. DeVito, and P. Hanrahan. Riposte: A trace-driven com-
piler and parallel VM for vector code in R. In Proceedings of the

21st international conference on Parallel architectures and compila-

tion techniques, PACT, pages 43–52, 2012.

[19] L. Tierney. A byte code compiler for R. Technical report, 2012.

[20] K. Trojahner. QUBE–Array Programming with Dependent Types. PhD
thesis, University of Lübeck, Lübeck, Germany, 2011.

[21] H. Wang, P. Wu, and D. Padua. Optimizing R VM: Allocation re-
moval and path length reduction via interpreter-level specialization. In
Proceedings of Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO, 2014.

